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Abstract

We investigate the scaling of conductances in anisotropic two-dimensional systems. The conductance and its
distribution in the two directions are found to be approximately the same, once the dimension of the system in each
direction is chosen to be proportional to the localization length. At the localization}delocalization transition under a
strong magnetic "eld, the geometrical mean of the conductance in the two directions is not universal. The distribution of
conductances at the critical point also show distinctive features in the two directions. � 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Localization in anisotropic systems attracted
much attention recently [1}9]. The renewed inter-
est is partly spurred by the attempt to understand
the normal state transport properties in di!erent
directions of the high-¹

�
cuprate superconductors

which is a layered material [10]. Although it is
generally believed that anisotropy in the form of
anisotropic hopping does not change the universal-
ity and the critical behavior of the problem, the
exact form of the scaling function is expected to
depend on anisotropy in the form of anisotropic
physical parameters such as anisotropic hopping
integrals or geometrical aspect ratios [11}13].
These details of the localization behavior in such

systems have never been examined until recently.
In an extensive numerical calculation [2] in three-
dimensional systems with the transfer matrix
method coupled with "nite size scaling technique, it
is clearly demonstrated that the states become
localized at the same critical disorder in all the
directions in highly anisotropic systems. The scen-
ario that states become localized in one direction
and extended in other cannot occur. However, it
was also pointed out in that work [2] that the large
disparity between the values of the coherent lengths
in di!erent directions makes the transport property
of such an anisotropic system much more complex
at "nite temperatures. The scaling property in
such anisotropic systems was also examined re-
cently [14]. It was proposed that the scaling func-
tion should solely depend on the conductances in
the di!erent directions, a natural extension of the
original one-parameter scaling theory which was
valid only in isotropic systems (For a recent review
see [15]). This hypothesis was successfully applied
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to the scaling of the "nite size localization lengths
in two-dimensional anisotropic systems. Numerical
investigation on scaling of conductance is much
more di$cult.
For conductance, a simple application of the

scaling idea can be made for a special aspect ratio.
When the dimension of the system size is chosen to
be directly proportional to the localization length,
the system should behave e!ectively isotropic. The
scaling function of such a special system should
then be the same as that of the isotropic system.
This, in fact, has been proposed previously [16}19]
but has never been checked before until the recent
work. The di$culty in implementing such a pro-
cedure lies in the fact that the localization lengths
are usually not known a priori. Nevertheless, it was
found through numerical calculations [14] that this
can indeed be done. With an anisotropy of hopping
integral 1:10, the conductances of two-dimensional
rectangular samples of di!erent sizes but the same
aspect ratio 10:1 were found to be the same in the
two directions for conductances in a range of ten
orders of magnitude. A particular question raised
was that would the distribution of conductances in
the two directions be also identical, as expected
from the generalization of scaling ideas to conduc-
tance distributions [20,21].
The other important question concerns about

the universality of the critical conductance at the
critical point of the Anderson transition [22,23].
From the generalized scaling functions, it can be
established [14] that the geometrical mean of the
localization length ratio �

�
,�

�
/M is a constant

independent of the anisotropy. Numerical calcu-
lations in both two- [14] and three-dimensional [1]
systems strongly support such a claim. But the
same cannot be said on the conductances. In fact,
numerical results [1] in three-dimensional anisot-
ropic systems do not support a universal conduc-
tance for the geometrical mean. In two-dimensional
systems, a localization}delocalization transition
occurs only when time reversal symmetry is bro-
ken. A well-known example is the integer quantum
Hall plateau transition occurring in two-dimen-
sional gas under a strong magnetic "eld (For re-
views see [24,25]). A recent calculation [26]
based on the network model [27] found that the
geometrical mean of the critical conductances is

universal within the uncertainty of the data at the
critical points with anisotropic coupling. The uni-
versal value, �G

�
�"0.58e�/h, is also di!erent from

the value predicted by analytical theory [28],
��
��

"�
�
(e�/h). However, our calculation with the

tight-binding model obtained, �G
�
�"0.506(e�/h)

in isotropic systems. This small but signi"cant dif-
ference is in odds with the fundamental universality
hypothesis [22,23] which states that the microscop-
ic details are not relevant within a class of models
characterized by a few fundamental symmetries. It
is therefore critical to investigate if in the two-
dimensional anisotropic systems, there is a univer-
sality in the critical conductance. These issues will
be the central theme of the paper.

2. Formalism

We consider the following tight-binding
Hamiltonian for an anisotropic 2d disordered
model under a strong magnetic "eld:

H"�
�

�
�
�n��n�# �

����

(v
��

�n��m�#c.c.), (1)

where n and m label the sites of a square lattice. The
on-site energies �

�
are independently distributed

at random within the interval [!=/2,=/2]. The
second term is taken over all pairs of nearest-neigh-
bor sites. The complex hopping integral v

��
is an-

isotropic and carries the phase due to applied
magnetic "elds via the standard Peierls substitution,

v
��

"t
��
e�����������

�

� �o �	o . (2)

The hopping integral t
��

"1 or t ((1), depend-
ing on hopping directions. As a convention, we
have assigned the direction with the large (t

��
"1)

and the small (t
��

"t) hopping value as the parallel
(��) and the perpendicular (�) directions, respect-
ively. Periodic boundary conditions are applied in
the transverse direction.
The zero temperature two terminal conductance

in a rectangular sample of width M and length ¸ is
given by the following multichannel Landauer
formula [29}31]:

G"

e�

h
¹r(¹�¹), (3)
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Fig. 1. The conductance G in units of e�/h of an anisotropic
system M�N, versus M for t"0.1 and E"0. The aspect ratio
10 : 1 is chosen such that the sample dimension is approximately
proportional to the localization length in that direction. Notice
that G along the two directions stay close to each other while
their over all magnitude changed many orders.

Fig. 2. The distribution of log(G) (in units of e�/h) of the anisot-
ropic system M�N (N"10 M) in the two directions for di!er-
ent sizes. The distribution is close to Gaussian and are almost
identical for the two directions.

where ¹ is the total transmission matrix through
the disordered sample. We calculate ¹ with the
standard transfer matrix method. Keep in mind
that G de"ned here is for one spin only.

3. Results and discussion

Since in the localization problem the relevant
length scales are the localization lengths, the con-
ductance should become isotropic if the dimensions
of the sample are chosen to be proportional to the
localization length [12,13]. This means, for anisot-
ropic systems, the shape of the sample should
be rectangular with the weak coupling direction as
the short dimension, in order for the system to have
isotropic conductances in the two directions. Once
this is done at some length scale, the isotropic
property is expected to maintain when the system
size is scaled up with the same factor, according to
the one parameter scaling theory [16}19]. This was
tested [14] in a 2d system with t"0.1 at E"0 and
="3.6. The aspect ratio was chosen to be 1:10,
approximately the localization length ratio. In
Fig. 1, we reproduce the geometrical averaged con-
ductance in the two directions when the system is
scaled up by up to 4 times. It clearly shows the
conductance remains approximately isotropic even
though the conductance has decreased by 8 orders
of magnitude. Since we do not know exactly the
localization length in the two directions, apparently
the aspect ratio, 10:1 we chose is only approxim-
ately equal to the localization length at E"0 and
="3.6. As a result, the conductances in the two
directions are not exactly equal. However, the di!er-
ence is small compared with the 8 orders of magni-
tude changes in the value of the conductances. In
Fig. 2, we show the statistical distributions of the
logarithmic of the conductances in the two direc-
tions at di!erent sizes. The distribution is clearly
Gaussian, indicating that the state is localized. This
is also the reason why a geometric mean is chosen in
Fig. 1 because the arithmetic mean is known to be
ill-behaved for localized states. The distributions in
the two directions do not show any signi"cant
di!erence, indicating that the system indeed cannot
be di!erentiated from an isotropic one, in agree-
ment with the one-parameter scaling theory.

We next examine the problem of the critical
conductance at the localization}delocalization
transition in an anisotropic system under a strong
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Fig. 3. Average conductance �G
	
� in the lowest Landau band in the weak coupling direction. (a) Conductance versus energy for

M"16, 32, 64, 96, 128, 160, and 192. (b) Normalized conductance as a function of scaled variable x"�E!E
�
�M��� with E

�
"!2.505

and �"�
	
. The number of samples for each data point ranges from 100 for M"192 and 10 000 for M"16.

magnetic "eld, i.e., the integer quantum Hall
plateau transition [24,25]. The tight-binding
model was known to describe the quantum
Hall transition well, at least in the lowest Landau
band. For the purpose of investigating the scaling
and the critical conductance, we have chosen
a "xed magnetic "eld such that the #ux per
square is one-eighth of the #ux quantum ( f"�



).

The anisotropy is taken to be t"0.5, and dis-
order strength is lowered to ="0.5 to have a
well-de"ned Lowest Landau band. From "nite size
scaling analysis, the arithmetic average of the con-
ductance at the critical point for isotropic systems
[22] was found to be �G

�
�"0.506e�/h, in agree-

ment with the predicted value from analytical
theory.
For anisotropic systems of a square geometry of

M�M, the conductance in the two direction will
be di!erent. In Figs. 3 and 4, we show the arithme-
tic averaged conductances in the two directions in
the lowest Landau band. Again, the conductance
peaks get narrower and narrower as the size of the
system increases. This agrees with the conventional

picture that only the state at the critical point is
truly extended. Also, notice the much smaller con-
ductance in the weak coupling direction (�) com-
pared with that in the strong coupling direction (��).
An important property is the scaling of the conduc-
tance G as a function of the system size. According
to the "nite-size scaling idea, the conductance is
expected to be determined solely by the ratio
of the localization length to the system dimension
M close to critical point. However, there is known
irrelevant "nite size correction such that the
scaling is modi"ed as

G(E,M)"G(E
�
,M) f (	

	
(E)/M, 	




(E)/M), (4)

where 	
	
(E) and 	




(E) are the macroscopic local-

ization lengths at energy E in the perpendicular
(weak coupling) and the parallel (strong coupling)
directions, respectively. f (x, y) is a universal func-
tion. The size dependence of the conductance max-
imum G(E

�
,M) represents the irrelevant "nite size

corrections,

G


(E

�
,M)"G

�
!aM������ . (5)
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Fig. 4. Average conductance �G



� in the lowest Landau band in the strong coupling direction. (a) Conductance versus energy for

M"16, 32, 64, 96, 128, 160, and 192. (b) Normalized conductance as a function of scaled variable x"�E!E
�
�M��� with E

�
"!2.505

and �"�
	
. The number of samples for each data point ranges from 100 for M"192 and 10 000 for M"16.

Utilizing 	
�
&�E!E

�
���, we obtain the expres-

sion

G
�
(E,M,¸)"G

�
(E

�
,M)

� f (�E!E
�
���/M, �E!E

�
��/¸)

"G
�
(E

�
,M)F(�E!E

�
�M���,M/¸), (6)

where i denotes the two directions �� and �. We
have also used the fact that the aspect ratio M/¸ is
a constant. Such a scaling analysis has been shown
to work beautifully on isotropic systems [22] and
the critical exponent � was determined to be very
close to the analytical value �"�

	
. Should scaling

exist in anisotropic system as well, then all of our
data for di!erent E and M would collapse on one
curve, providing that the correct values of E

�
and

� are chosen. The results of such a scaling proced-
ure are shown in Figs. 3b and 4b for the arithmetic
mean and Figs. 5b and 6b for the geometrical mean,
respectively, with E

�
"!2.505 and �"�

	
. Scaling

behavior is clearly established. Deviations seen on
isotropic systems [32] for small M and higher
energies due to the "nite-size e!ect and the e!ect of
mixing with higher bands, are not visible here.

Then critical conductance in the two directions,
averaged over a large number of samples, are
shown in Figs. 7 and 8 for the perpendicular and
parallel direction, respectively. To extract the exact
values for the critical conductances in the thermal
dynamic limit, we have extended the procedure for
the isotropic systems [22], with di!erent irrelevant
exponents in the two directions. However, we have
not been successful in obtaining a good "t to the
above form. There seem to be systematic deviations
at small M. However, if we discard the data for
M"8 and 16, some reasonable "t is possible. We
obtain �G



�
�"1.04 and �G

	�
�"0.33 as the best

"t for the two directions, respectively. This makes
the geometrical mean (�G



�
��G

	�
�)���"0.58. Al-

ternatively, we have also calculated the geometrical
mean of the conductance from the two directions at
each size and then "tted these values to the formula.
This produces a best "t �G

�
�


"0.60, a very close

value to the "rst method. The present result indi-
cates that the geometrical mean of the critical con-
ductances in the two directions are not universal.
This again supports the conclusion that there are
di!erences between the tight-binding model and
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Fig. 5. Geometrically averaged conductance �G
	
� in the lowest Landau band in the weak coupling direction. (a) Conductance versus

energy for M"16, 32, 64, 96, 128, 160, and 192. (b) Normalized conductance as a function of scaled variable x"�E!E
�
�M��� with

E
�
"!2.505 and �"�

	
. The number of samples for each data point ranges from 100 for M"192 and 10 000 for M"16.

Fig. 6. Geometrically averaged conductance �G



� in the lowest Landau Band in the strong coupling direction. (a) Conductance versus

energy for M"16, 32, 64, 96, 128, 160, and 192. (b) Normalized conductance as a function of scaled variable x"�E!E
�
�M��� with

E
�
"!2.505 and �"�

	
. The number of samples for each data point ranges from 100 for M"192 and 10 000 for M"16.

the network model in terms of behaviors of the
critical conductances. This needs to be examined
closely.

The distribution of the conductance also shows
interesting properties. For isotropic systems and at
the critical point, the distribution is broad and
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Fig. 7. Conductance at the critical point, �G
	
(E

�
,M)� in the

weak coupling direction, as a function of system size M for
square samples of M�M. The extrapolated value for in"nite
size (see text) is �G

	�
�"0.32e�/h for the arithmetic average. The

error bars are smaller than the size of the symbols.

Fig. 8. Conductance at the critical point, �G



(E

�
,M)� in the

weak coupling direction, as a function of system size M for
square samples of M�M. The extrapolated value for in"nite
size (see text) is �G

	�
�"1.04e�/h for the arithmetic average. The

error bars are smaller than the size of the symbols.

Fig. 9. Distribution of the conductance G
	
at the critical point

E
�
"!2.505 for di!erent sample sizes. (a) M"16, (b) M"32,

(c) M"64, and (d) M"128. Each size has more than 10 000
samples. Distributions at M"192 (not shown here) is almost
identical with that of M"128 within the statistical #uctuation.

ranges between 0 and 1. Fluctuations, as measured
by the standard deviation, is of the same order of
magnitude as the average conductance itself. All
these properties are still true in anisotropic systems
as shown in Figs. 9 and 10 for the perpendicular
and parallel directions, respectively. The distribu-
tions in the parallel direction (Fig. 10) resemble
closely that of the isotropic system, having dip
developing at small G with the increase of system
sizes. The dip here is more pronounced though, and
the maximum probability moves toward larger
values of G. However, for the perpendicular direc-
tion the large weight at small G, a signature of the
log-normal distribution appropriate for the localiz-
ed states, persists even for the largest systems,
M"192. The overall weight nevertheless shifts to-
ward larger values with increasing system sizes. At
critical points, it has been proposed that the con-
ductance distribution should be universal indepen-
dent of the size of the system. This assertion is
based on the fact that there is no length scale since
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Fig. 10. Distribution of the conductance G



at the critical point

E
�
"!2.505 for di!erent sample sizes. (a) M"16, (b) M"32,

(c) M"64, and (d) M"128. Each size has more than 10 000
samples. Distributions atM"192 (not shown here) shows more
trend towards larger values of conductance.

the localization length diverges at the critical point.
This is very interesting and needs to be investigated
in the future.

4. Conclusions

In summary, we have investigated the scaling
properties in two-dimensional systems with and
without time-reversal symmetry breaking. For the
system without any magnetic "elds, we "nd that
not only the averaged conductance �G�



but also

its distributions are approximately the same in the
strong and weak coupling directions, if the system
dimension is chosen to be proportional to the local-
ization length in that direction. This is a strong
con"rmation of the scaling idea. In the localiza-
tion}delocalization transition, we established the
scaling of conductance in anisotropic systems
around the critical point and con"rmed that the

critical exponent for the localization length is the
same in both directions. The critical conductance in
the two directions, extrapolated to in"nite systems,
are di!erent, as expected. However, their geometri-
cal products do not correspond to the value for
isotropic systems, unlike in the network model.
Again, this points out real di!erences between the
tight-binding model and the network model so far
as the critical conductance is concerned.
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